Да, тот что в виде палочек загружается в пистолет.. 4 доллара пистолет и 0,3 доллара одна палочка клея..
По поводу датчиков , я пришел к выводу что торсионные поля это вращающиеся магнитные поля, причем они могут быть разных частотных спектров, а вращение может иметь несколько степеней свободы. Подумайте над этим...
Это совсем не то что обычные эми с круговой поляризацией.....там хоть частота вращения совпадает с частотой поля. В торсионных может не совпадать.
Но дело даже не в этом.. чаще всего торсионные поля, которые нам бы надо измерить, те , с которыми мы чаще имеем дело, это поля с высокой частотой вращения... гдето оттмиллиарда оборотов в секунду и выше.. частота определяетсявращением молекул или элементов атома веществ которые являются поляризаторами..эт что касательно генераторов торсионки, так сказать , техногенных..
А торсионные поля биологических организмов имеются как низкочастотные, так и высокочастотные. Высокочастотные, эт те которые генерируются в митохондриях, это миллиарды оборотов в секунду. Эти поля порождают целый ряд вторичных полей, начиная от низкочастотных , в чакрах, и заканчивая сверхнизкочастотными вокруг тела. Это вращение внешних оболочек биополя.
Обычно этого вращения нет, но его можно сформировать. Проявления этого ? Н.Кулагина вращала стрелку компаса.. некоторым удается вращать потоки воздуха, ветер, вихри, смерч и т.д. вспоминаем вращения дервишей, ведьмы на горе, вращающиеся энергетические столбы, вращение кокона, как метод защиты от внешних энерго воздействий и т.п.
Сюда же можно отнести и поле шестигранного резонатора. А вот поле пирамиды уже более высшего порядка, оно имеет несколько вращательных степеней свободы. Если у шестигранника два поля встречной поляризации, но они колинеарны, и оно двухчастотное, то пирамида создает целый спектр частот в очень широкой полосе частот. Низкая частота определяется габаритами ее, самая верхняя определена , вернее ограничена точностью изготовления вершин, закруглениями в углах. Если это кристалл, например, пирамидальной формы, с радиусом скругления в углах несколько микрон, то частоты очерь высоаие могут быть.
Короче я пришел к выводу, что детектировать можно, дплеко не все торсионные поля... и в узких частотных полосах.
Если это поля атомарного уровня, т.е. СВЧ и более, то их можно детектить обычными датчиками шума. Т.е. например полупроводниковый элемент, это может быть даже резистор, таблетка активированного угля, нить накаливания лампы, диод, транзистор и т.п.включенный на вход малошумящего чувствительного усилителя. При этом усилитель должен быть помещен в экран, блоаирующий проникноверия торсионки данного спектра. А детектирующий элемент помещен в резонатор с определенными параметрами. Эт чтобы не ловить ВСЕ поля вокруг, а только некоторого узкого спектра. Исхоля из свойств резонаторов, я думаю наиболее приемлемым был бы резонатор в виде треугольника либо разрезанной окружности. Размер треугольника определит полосу частот . Разрезная окружность , тут ее диаметр и ширина разреза.
Для низкочастотных полей все сложнее, хотя частота вращения низкая, но усугубляет тот факт что сила поля гораздо ниже уровня помех.. т.е. представим что на площади стоят 1000 человек и все кричат каждый свое. Но один человек в толпе стоит на вращающейся платформе и говорит чтото свое. Причем тихо говорит. Вот проблема детектирования низкочастотной торсионки стоит именно так как нам бы надо было уловить щвук разговора этого одного человека. И в случае с человеком, это отчасти возможно. Поскольку разместив вокруг площади три датчика, применив метод триангуляции и вычисления сдвига фаз, мы могли бы из спектра шума выделить нужный сигнал. Да и то, есои б мы знали точно частоту вращения этого человека на платформе. Т.е. съем сигнала шел бы в привязке к вращающейся системе координат.
Как сделать это для вращающеоося МП я пока не представляю себе...но так примерно прикинул, что, это возможно при использовании высокочувствительного четырех осевого датчика магнитного поля, и очень мощного компьютера..